

 Navigation

 	
 index

 	
 next |

 	kwapi-g5k 1.0.0 documentation

Welcome to Kwapi’s developer documentation!

Kwapi is a framework designed for acquiring energy consumption and network metrics. It
allows to import metrics from various sources and expose them in different ways.

Its architecture is based on a layer of drivers, which retrieve measurements
from wattmeters or network switches, and a layer of plugins that collect and process them. The
communication between these two layers goes through a bus. In the case of a
distributed architecture, a plugin can listen to several drivers at remote
locations.

Drivers and plugins are easily extensible to support other types of sources,
and provide other services and metrics.

What is the purpose of the project and vision for it?

	Kwapi could be used to do:

	
	Energy monitoring of data centers

	Usage-based billing

	Efficient scheduling

	Network traffic visualisation

	Long-term storage of measurements

It aims at supporting various wattmeters and switches, being scalable and easily extensible.

This documentation offers information on how Kwapi works and how to contribute
to the project.

Table of contents

	Installing
	Installing Kwapi from source

	Installing Kwapi on Grid‘5000

	Running Kwapi modules as daemon

	Running Kwapi modules in foreground (debugging)

	System Architecture
	Kwapi drivers

	Kwapi plugins

	Kwapi forwarder

	Kwapi HDF5

	Kwapi Ganglia

	Configuration Options
	Kwapi drivers specific

	Kwapi plugin API specific

	Kwapi plugin RRD specific

	Kwapi plugin Live specific

	Kwapi plugin Ganglia specific

	General options

	Kwapi forwarder specific

	Kwapi Daemon specific

	Kwapi Development
	Project Hosting Details

	Areas to Contribute

	Working with the Source

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	kwapi-g5k 1.0.0 documentation

Installing

Installing Kwapi from source

	Clone the Kwapi git repository to the management server:

$ git clone https://github.com/lpouillo/kwapi-g5k.git

	Data management use numpy, which cannot be installed vi pip. On Debian/Ubuntu, use:

$ apt-get install python-numpy

	Run the Kwapi installer and copy the configuration files:

$ pip install kwapi-g5k
$ cp -r kwapi-g5k/etc/kwapi /etc/

Installing Kwapi on Grid‘5000

	Create a VM on the site you want to monitor. You can create a domU with Xen or KVM. The command should be similar to this one:

$ http_proxy="http://proxy:3128/" xen-create-image --hostname=kwapi --ip=ip_address --dist wheezy --role=udev

You can find more informations about this procedure here: https://www.grid5000.fr/mediawiki/index.php/Services_Xen_DomU

	Start your VM:

$ xm create /etc/xen/kwapi.cfg

	Install configuration tool on the VM. Puppet manifests and files are available in puppet-repo. You must install the right version of Puppet used in Grid‘5000. Installation procedure can be find here: Puppet [https://www.grid5000.fr/mediawiki/index.php/Puppet]. After the certificate signing procedure, you should have a new Puppet node named kwapi.site.grid5000.fr.

	Configure Kwapi with Puppet. You have to add additional classes on your new Puppet node. Use puppetplay to add kwapi-g5k class on the node:

$ puppetplay node kwapi.site.grid5000.fr --edit --add-classes kwapi-g5k

	Wait one hour or use Capistrano tool [https://www.grid5000.fr/mediawiki/index.php/Puppet_deployment_with_Capistrano] to force Puppet execution on the VM.:

$ cap puppet:production HOST=kwapi.site.grid5000.fr MODULE=all SITE=site

	Your VM is now configured with latest Grid‘5000 version of Kwapi. You can connect on the node to check Kwapi service status.:

$ ssh kwapi.site.g5kadmin
$ sudo service kwapi status

Running Kwapi modules as daemon

Kwapi can be started, stoped, restarted with the service command:

$ sudo service kwapi start|stop|restart

This command will start kwapi as a daemon and run the modules indicated in /etc/kwapi/daemon.conf file.

Running Kwapi modules in foreground (debugging)

If you want to manage each Kwapi module individually (drivers and plugins), you can run the following commands.

	Start the drivers on all the configured machines:

$ kwapi-drivers

	Start the forwarder on this machine and a remote machine (optional):

$ kwapi-forwarder

	Start the API plugin if you want to access metrics with the API:

$ kwapi-api

	Start the RRD plugin if you want to store data as RRD (mandatory to display graphs in a web browser):

$ kwapi-rrd

	Start the HDF5 plugin if you want to store fine grained datas:

$ kwapi-hdf5

	Start Live plugin to active Web visualisation of your mesures:

$ kwapi-live

	Start Ganglia plugin to push data to the remote Ganglia server:

$ kwapi-ganglia

Warning

Don’t forget to stop Kwapi daemon service before activating modules in foreground or it will result on conflict problems and data corruption !

 Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	kwapi-g5k 1.0.0 documentation

System Architecture

Overview of the global layered architecture:

[image: _images/layered_architecture.png]

Kwapi drivers

Kwapi drivers are derived from a Driver superclass, itself derived from Thread.
So drivers are threads. At least one driver thread is instantiated for each wattmeter
or switch you want to monitor. Their constructors takes as arguments a list of
probe IDs, and kwargs (specific arguments).

Driver threads roles are:

	Setting up a wattmeter or a switch.

	Listening and decoding received data.

	Calling a driver superclass method with measurements as argument.
This method appends signature to the measurements, and publishes them on the bus.

Message format:

[image: _images/message_format.png]
There is several types of drivers already implemented in Kwapi. You can of course
implement your own driver.

SNMP drivers

Using the SNMP protocol and the right OIDs, you can retrieve a subtree of values
corresponding, for a wattmeter, at the power consumption, for a switch, at the
network traffic of ihis interfaces.

Of course, this driver works with any device that implement SNMP protocol. So
you can retrieve other metrics depending on what you want to monitor.

Wattmeters via SNMP

Kwapi supports different kinds of wattmeters (IPMI, Eaton PDU, Wattsup, etc).
Wattmeters communicate via IP networks or serial links. Each wattmeter has one
or more sensors (probes). Wattmeters send their values quite often (each
second), and they are listen by wattmeter drivers.

Network drivers

Second type of drivers is the network drivers. Giving a switch address and the
correct protocol, you can retrieve incoming and outgoing traffic. You have just to
configure the right OIDs and allow SNMP requests on the switch. Every port of the given
switch is scanned and the current counter value of the interface is assigned to the
configured neighbor. This counter is a 64-bits number that correspond to the total
number of octets received on the interface, including framing characters.

Dummy drivers

Added as a testing feature, dummy drivers just send the value you ask them to send.
They are used to simulate a probe. You can configure them as you wish. Kwapi implements
dummynet and dummywatt drivers to simulate network and wattmeter drivers.

IPMI drivers

IPMI drivers use the command line ipmitool to retrieve information from IPMI sensors.

JSON url drivers

This driver can be used to get informations directly from JSON structured text
of Grid‘5000 API. It can be usefull when you want to import in Kwapi remote
metrics from the Metrologie API.

Driver manager

The driver manager is the loader and the checker of driver threads. It loads
all drivers according the configuration file, and checks regularly that driver
threads are alive. In case of crash, the event is logged and the driver thread
is reloaded. We can imagine that a driver will crash if a technician unplug a
wattmeter, for example.

Bus

Currently, the internal Kwapi bus is ZeroMQ. Publishers are driver threads, and
subscribers are plugins.

Kwapi plugins

Kwapi API plugin

Kwapi API offers a REST API. This API is linked in Grid‘5000 API and adopts its
standard to expose live measures to the users. Such data can then be imported in
experiments by just sending a request to the API. This plugin contains a collector
that computes kWh for power, interface counters for network and an API based on Flask.

Collector

The collector stores these values for each probe:

[image: _images/collector.png]

	Fields:

	
	Probe id: could be the hostname of the monitored machine. But it is a bit
more complicated because a probe can monitor several machines (PDU).

	Timestamp: is updated when a new value is received.

	Integrated (power only): is computed by taking into account the new value in watt,
and the elapsed time since the previous update.

	Value: offers the possibility to know instantaneous consumption or traffic of a
device, without having to query two times a probe in a small interval to
deduce it. This could be especially useful if a probe has a large refresh
interval: there is no need to wait its next value.

	Unit: metric unit. For example ‘W’ stands for watt in power API.

	Type: metric type can be ‘Gauge’ or ‘Cumulative’. It indicates if measures
are retrivied as counter or not and if an integrated value can be calculated

No history is kept by this plugin. Storage is offered with other plugins. The collector
is cleaned periodically to prevent a deleted probe from being stored indefinitely
in the collector. So when a probe has not been updated for a long time, it is deleted.

API

	Verb
	URL
	Parameters
	Expected result

	GET
	/probe-ids/
	
	Returns all known probe IDs.

	GET
	/probes/
	
	Returns all information about all known probes.

	GET
	/probes/<probe>/
	probe id
	Returns all information about this probe
(id, timestamp, value, type, integrated).

	GET
	/probes/<probe>/<metric>/
	probe id
metric {power, network}
	Returns the probe’s metric value.

Kwapi RRD plugin

It stores information from the drivers directly in RRD files. The advantage of such files is that they permits to render efficiently Graphs with various scales.
The size of the databases are constant. One database per probe and per metric is created. By default, RRD files are stored in /var/lib/kwapi/kwapi-rrd.

This plugin create and update automatically the RRD files, depending on the values he receives from the drivers.

	As each plugin, he needs:

	
	Probe id: probe identifier (could be different than probe name)

	Name: metric name

	Timestamp: time of the measure, given by the driver, unix format timestamp

	Measure: measure

	Parameters: other informations about the metrics

Kwapi Live plugin

Web interface

The visualization plugin provides a web interface with power consumption and network traffic graphs. It is based on Flask and RRDtool.

	Verb
	URL
	Parameters
	Expected result

	GET
	/<metric>/last/<period>/
	metric { power, network }
period { minute, hour, day, week, month, year }
	Returns a webpage with a summary graph
and all probe graphs.

	GET
	/<metric>/probe/<probe>/
	metric { power, network }
probe id
	Returns a webpage with all graphs about
this probe (all periods).

	GET
	/<metric>/summary-graph/<start>/<end>
	metric { power, network }
start timestamp
end timestamp
	Return a summary graph of the metric
evolution about this period

	GET
	/<metric>/graph/<probe>/<start>/<end>
	metric { power, network }
probe id
start timestamp
end timestamp
	Returns a graph about this probe.

Webpage with a summary graph and all probe graphs:

[image: _images/webpage.png]
Webpage with scales summaries of a probe:

[image: _images/webpage-net.png]
In the menu bar, you can choose the period the metric you want to display.
For each metric you can select a timescale (last minutes, hour, day, week,
month or year). By clicking on a probe, you can display all graphs available
for this probe, with different resolutions.

You can select several probes and display a stacked summary of their consumption.
Use the job field to automatically monitor probes corresponding to your job (select
the correct probes and adapt timescale)

Graphs

The summary graph shows the total measurements for the selected metric (sum of all the probes).
Each colour corresponds to a probe.

	The legend contains:

	
	Minimum, maximum, average and last measures.

	Integrated measure (energy consumed (kWh) or network traffic (Kb/s)).

	Cost if any.

	File sizes:

	
	RRD file: 10 Ko.

	Probe graph: 12 Ko.

	Summary graph: 24 Ko.

A cache mechanism prevents graphs from being rebuilt uselessly.

Kwapi forwarder

The forwarder aims at decreasing the network traffic: if multiple plugins
listen the same probe, the metric is sent once on the network, and the
forwarder duplicate it and sends a copy to each listeners. The forwarder can
also be installed on a gateway machine, in order to connect isolated networks.

The following diagram shows these two features:

[image: _images/bus.png]
Using the forwarder is optional, and the plugins can be configured to subscribe
directly to the drivers. Direct subscribing without using the forwarder is
recommanded if the drivers and the plugins are running on the same machine.

Kwapi HDF5

Kwapi HDF5 is used to store fine grained metric with Kwapi. Each measure returned by the drivers are stored in an HDF5 file on the server.
The main advantages of this database are:
* Very large datasets: store several months of power consumption of numerous probes
* Fast access
* Hierarchical store: data can be groupped by site or cluster
* Parallel writing
* Compressed file for low storage cost
* Heterogeneous data support

You can configure the split period of your HDF5 files in the configuration file (1 file per month or less) depending on how much data you want to save.

Collector

	The HDF5 Collector is composed of one Writter by metric with their proper buffers and a single queue per metric where all the data from drivers are appended.

	
	The update function put the new received value in the queue that correspond to his metric.

	Each Collector iterate on his corresponding queue and for each new measure, writes an entry in his internal buffer

	When a Collector buffer is full, it writes his values to the database on the disk depending on the current date

	If the plugin is stopped, a STOP flag his added in all the queues

	When the Collector receive a STOP flag, buffers are flushed on the disk and Collector exits

Writes on the database are made with a fixed chunk_size that can be set in the configuration file.

API

REST API permits to retrieve measures from those databases. Unlike RRD database, HDFStore store raw measures and datas are not alterated.
API is very similar to Kwapi-API

	Verb
	URL
	Parameters
	Expected result

	GET
	/<metric>/
	metric { power, network }
	Returns all known probe IDs for the metric.

	POST
	/<metric>/timeseries/[job-id|probes]
	metric { power, network }
job_id in Grid‘5000
probes: list of probes
	Return all data for the selected probes and selected range.
Selection is made with job_id or probe name given.

Kwapi Ganglia

This plugin his pretty simple. You first have to run a Ganglia server somewhere. It have to accept data from the remote Kwapi server.
For this, edit the configuration file according to Ganglia Documentation. Check for the Ganglia multicast address.

The single parameter of this plugin is the ganglia_server address. Edit this field in the configuration file to point your remote Ganglia server.
All data received from your drivers will be sended to the server. Actual configuration just send single power probes consumption to Ganglia.

	Metric
	Remote name
	Parameters

	power
	pdu2
	
	units: Watts

	type: uint16

	value: int(metrics)

	hostname: ip:hostname (ex: 192.168.1.1:griffon-54.nancy.grid5000.fr)

	spoof: True

	network_in
	None
	

	network_out
	None
	

 Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	kwapi-g5k 1.0.0 documentation

Configuration Options

Kwapi drivers specific

The following table lists the Kwapi drivers specific options in the drivers
configuration file. For information we are listing the configuration elements
that we use after the Kwapi drivers specific elements.

	Parameter
	Default
	Note

	probes_endpoint
	ipc:///tmp/kwapi-drivers
	Endpoint where the drivers send their measurements
ipc://<file> or tcp://<host>:<port>

	enable_signing
	true
	Enable message signing between drivers and plugins

	metering_secret
	change this or be hacked
	Secret value for signing metering messages

	check_drivers_interval
	60
	Check drivers at the specified interval and restart them if
they are crashed

The configuration file contains a section for each wattmeter.

A sample configuration file can be found in drivers.conf [https://github.com/lpouillo/kwapi-g5k/blob/master/etc/kwapi/drivers.conf].

Kwapi plugin API specific

The following table lists the Kwapi API specific options in the API
configuration file. For information we are listing the configuration
elements that we use after the Kwapi API specific elements.

	Parameter
	Default
	Note

	api_port
	5000
	API port

	probes_endpoint
	ipc:///tmp/kwapi-forwarder
	Endpoint where the measurements are received

	signature_checking
	true
	Enable the verification of signed metering messages

	driver_metering_secret
	change this or be hacked
	Secret value for verifying signed metering messages

	cleaning_interval
	300
	Delete the probes that have not been updated during the
specified interval

A sample configuration file can be found in api.conf [https://github.com/lpouillo/kwapi-g5k/blob/master/etc/kwapi/api.conf].

Kwapi plugin RRD specific

The following table lists the Kwapi RRD specific options in the RRD
configuration file. For information we are listing the configuration
elements that we use after the Kwapi RRD specific elements.

	Parameter
	Default
	Note

	probes_endpoint
	ipc:///tmp/kwapi-forwarder
	Endpoint where the measurements are received

	signature_checking
	true
	Enable the verification of signed metering messages

	driver_metering_secret
	change this or be hacked
	Secret value for verifying signed metering messages

	rrd_dir
	/var/lib/kwapi/kwapi-rrd
	The directory where are stored RRD files

A sample configuration file can be found in rrd.conf [https://github.com/lpouillo/kwapi-g5k/blob/master/etc/kwapi/rrd.conf].

Kwapi plugin Live specific

The following table lists the Kwapi Live specific options in the Live
configuration file. For information we are listing the configuration
elements that we use after the Kwapi Live specific elements.

	Parameter
	Default
	Note

	live_port
	8080
	Port used to display webpages

	probes_endpoint
	ipc:///tmp/kwapi-forwarder
	Endpoint where the measurements are received

	signature_checking
	true
	Enable the verification of signed metering messages

	driver_metering_secret
	change this or be hacked
	Secret value for verifying signed metering messages

	png_dir
	/var/lib/kwapi/kwapi-png
	The directory where are stored PNG files

	rrd_dir
	/var/lib/kwapi/kwapi-rrd
	The directory where are stored RRD files

	currency
	€
	The currency symbol used in graphs

	kwh_price
	0.125
	The kWh price used in graphs

	hue
	100
	The hue of the graphs

	max_watts
	400
	The maximum value of the summary graph

	refresh_interval
	5
	The webpage auto-refresh interval

A sample configuration file can be found in live.conf [https://github.com/lpouillo/kwapi-g5k/blob/master/etc/kwapi/live.conf].

Warning

Be sure that rrd_dir directory is the same in RRD Plugin and Live plugin

Kwapi plugin Ganglia specific

The following table lists the Kwapi Ganglia specific options in the Ganglia
configuration file. For information we are listing the configuration
elements that we use after the Kwapi API specific elements.

	Parameter
	Default
	Note

	ganglia_server
	udp://239.2.11.71:8649
	Ganglia server address

	probes_endpoint
	ipc:///tmp/kwapi-forwarder
	Endpoint where the measurements are received

	signature_checking
	true
	Enable the verification of signed metering messages

	driver_metering_secret
	change this or be hacked
	Secret value for verifying signed metering messages

A sample configuration file can be found in ganglia.conf [https://github.com/lpouillo/kwapi-g5k/blob/master/etc/kwapi/ganglia.conf].

General options

The following is the list of options that we use:

	Parameter
	Default
	Note

	log_file
	
	Log output to a named file

	verbose
	true
	Print more verbose output

Kwapi forwarder specific

The following table lists the Kwapi forwarder specific options in the forwarder
configuration file. For information we are listing the configuration elements that
we use after the Kwapi forwarder specific elements.

	Parameter
	Default
	Note

	forwarder_endpoint
	ipc:///tmp/kwapi-forwarder
	Endpoint where the measurements are forwarded and where the
plugins subscriptions are received

	probes_endpoint
	ipc:///tmp/kwapi-drivers
	Endpoint where the drivers send their measurements.
ipc://<file> or tcp://<host>:<port>

A sample configuration file can be found in forwarder.conf [https://github.com/lpouillo/kwapi-g5k/blob/master/etc/kwapi/forwarder.conf].

Kwapi Daemon specific

The following table lists the Kwapi service specific options in the daemon
configuration file.

Set a parameter to false will not start the corresponding plugin/driver when you start the service.

Warning

Always run service kwapi stop BEFORE modifying any of the following parameters !

	Parameter
	Default
	Note

	KWAPI_DRIVERS
	true
	Start Kwapi drivers in kwapi service

	KWAPI_FORWARDER
	true
	Start Kwapi forwarder in kwapi service

	KWAPI_API
	true
	Start Kwapi api in kwapi service

	KWAPI_RRD
	true
	Start Kwapi rrd in kwapi service

	KWAPI_HDF5
	true
	Start Kwapi hdf5 in kwapi service

	KWAPI_LIVE
	true
	Start Kwapi live in kwapi service

	KWAPI_GANGLIA
	true
	Start Kwapi ganglia in kwapi service

A sample configuration file can be found in daemon.conf [https://github.com/lpouillo/kwapi-g5k/blob/master/etc/kwapi/daemon.conf].

 Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	kwapi-g5k 1.0.0 documentation

Kwapi Development

	Project Hosting Details

	Areas to Contribute
	Drivers

	Plugins

	Testing

	Working with the Source
	Setting up a Development Sandbox

	Code Reviews

 Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	kwapi-g5k 1.0.0 documentation

 	Kwapi Development

Project Hosting Details

	Bug tracker:	https://intranet.grid5000.fr/bugzilla/

	Code Hosting:	https://github.com/lpouillo/kwapi-g5k

	Mailing list:	g5k-dev team

	Grid‘5000 Doc:	https://www.grid5000.fr/mediawiki/index.php/Monitoring

See also

	user

 Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	kwapi-g5k 1.0.0 documentation

 	Kwapi Development

Areas to Contribute

Drivers

Kwapi aims at supporting various drivers. If you have a non-supported
wattmeter, you can easily contribute by writing a new one.

Plugins

Kwapi plugins process the metrics. You can contribute by writing new plugins to
bring new functionnalities.

Testing

The first version of Kwapi has not yet unit tests and has not seen much
run-time in real environments.

 Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	kwapi-g5k 1.0.0 documentation

 	Kwapi Development

Working with the Source

Setting up a Development Sandbox

	Set up a server or virtual machine.

	Clone the kwapi project to the machine:

$ git clone https://github.com/lpouillo/kwapi-g5k.git
$ cd ./kwapi-g5k

	Once this is done, use develop option of setup.py file to install kwapi locally:

$ python setup.py develop

	If some dependant packages are missing, fix them with pip install:

$ pip install -r requirments.txt

	You can start to hack kwapi. If you are preparing a patch, create a topic branch and switch to
it before making any changes:

$ git checkout -b TOPIC-BRANCH

	Use git to push your changes and ask for a pull request.

	Package your solution for Debian installation:

$ python setup.py --command-packages=stdeb.command bdist_deb
$ cd deb_dist/

All the deb archives are exported in this directory.

	Import the new generated packages of kwapi-g5k on the remote apt repository.

	Execute Puppet on the VM to install the latest version of Kwapi or simply run:

$ apt-get update && apt-get install python-kwapi-g5k

Code Reviews

Kwapi uses the GitHub to hos all code and developer documentation contributions.
You can report an issue or a feature request on this repository.

Bugzilla can also be used for API related bugs or device configuration problems.

 Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	kwapi-g5k 1.0.0 documentation

Glossary

	driver

	Software thread running querying a wattmeter or switch and sending
the results to the plugins.

	forwarder

	Component that forwards plugins subscriptions and metrics.
Used to minimize the network traffic, or to connect isolated networks
through a gateway.

	plugin

	An action triggered whenever a meter reaches a certain threshold.

	probe

	A wattmeter sensor or network device.
A wattmeter can have only one probe (usually the IPMI cards), or
multiple probes (usually the PDUs).
A network device usually have multiples probes that correspond to
his network interfaces. One probe is defined for incoming traffic
and one for outgoing traffic.

 Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	kwapi-g5k 1.0.0 documentation

Index

 D
 | F
 | P

D

 	

 	driver

F

 	

 	forwarder

P

 	

 	plugin

 	

 	probe

 Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

 _images/collector.png
Probe id

Key

Timestamp

Seconds since epoch

Integrated

Power only

Value

Instantaneous consumption

Unit

Metric unit

Type

Gauge or cumulative values

_images/message_format.png
Probe id

Key

Name

Metric name

Timestamp

Seconds since epoch

Measure

Raw data from driver

Parameters

Depends on metric type

_images/layered_architecture.png
h

_static/minus.png

_static/comment.png

_static/comment-close.png

_images/bus.png
Stuttgart
(Paris A]

Servers
with
Plugins

Servers
with
Drivers

1’xLyon D
1xLyonE
1xLyonF

1 x Paris. A
1 x Paris.B
1xLyon.D
1xLyonE
1 xLyon.F

Karlsruhe
fLyon-]

[Lyon €]

Driver

. Forwarder
@
@

Server

Network A
Network B
[probe] Subscription

_images/webpage.png
Nancy monitoring

Energy

Summary
Summary (month)
a0
a0
Eom
£
200
Ofeck 02 Wesk 03 Wesk 04 Wesk 05 Wesk 06
Avg: 174.0 W Hin: 30.6 W Max: 425.7 W Last: 126.3 W
Total: 112.906927 kWh Cost: 4.516277 €
Details

x nancy.graphene-133

x nancy.graphene-134 || nancy.graphene-144

x nancy.graphene-107

Job All Clear
nancy.graphene-133 (month) nancy.graphene-134 (month)
4001 4001
a0 a0
£ £
K K
200 200
o o
Yook 02 Wesk 03 Wesk 0 Wesk 05 Wesk 0 Yook 02 Wesk 03 Wesk 0 Wesk 05 Wesk 0
Avg: 40.6 W Min: 3.1 W Max: 105.1 W Last: 22.0W Avg: 428 W Min: 8.7 W Max: 109.5 W Last: 2.5 W
Total: 26.329450 kih Cost: 1.053178 € Total: 27.745431 kih Cost: 1.109817 €
nancy.graphene-144 (month) nancy.graphene-107 (month)
4001 4001
a0 a0
£ £
K K
200 200
o o
Yook 02 Wesk 03 Wesk 0 Wesk 05 Wesk 06 Yook 02 Wesk 03 Wesk 04 Wesk 05 Wesk 06
g a2.2 W Min: 7.9 W Max: 113.4 W Last: 213 W Avg: 485 W Min: 8.4 W Max: 132.1 W Last: 60.5 W
Total: 27.378875 knh Cost: 1.095155 € Total: 31.453171 kmh Cost: 1.258127 €

_images/webpage-net.png
Enel

ay

Nancy monitoring

Network

nancy.griffon-8

nancy.griffon-8 (5 minutes)

nancy.griffon-8 (hour)

£l 200 k
2 00k L
£ e £ 00k
100 K ok
200 k > .
e T T e e W me m mm m® 360
AVGIN: 22.6kb/s MinIN: 0.0 b/s MaxIN: 220.5kb/s LastIN: 5.6kb/s AVGIN: 18.7kb/s MinIN: 3.6kb/s MaxIN: 119.6kb/s LastIN: 7.6kb/s
AVgOUT: 22, 0Kb/SMinOUT: 350.7 b/sMaxOUT: 17L.5kb/sLastoUT: 8.kb/s AVgOUT: 18.5Kb/s MinOUT: 4.1kb/s MaxOUT: 205.5kb/s LastouT: 9.2kb/s
nancy.griffon-8 (day) nancy.griffon-8 (week)
3nt o0nt
in
w im o M
i b ¢
e, e + =
a2 2w 2 0w
Sn
Sh 2om .
i o000 i 1z:00 = T - R
AVGIN: 443.2kb/s MinIN: 4.6 b/s MaxIN: 2.7Mb/s LastIN: 17.1kb/s AVGIN: 758.6kb/s MinIN: 0.0 b/s MaxIN: 12.7Mb/s LastIN: 20.3kb/s
AVGOUT: BL.1kb/s MinOUT: 3.5kb/s MaxOUT: 3.7Mb/s LastOUT: 17.1kb/s AVgOUT: 798, 6kb/ MinOUT: 0.0 b/s MaxOUT: 13.9Mb/s LastOUT: 19.3kb/s
nancy.griffon-8 (month) nancy.griffon-8 (year)
wnt 1
in
i e *«I—I Lt g °
an
Week 02 Week 03 Week 04 Week 05 Week 06 Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan "
AVgIN: 382.5Kkb/s MinIN: 602.2ub/s MaxIN: 9.8Mb/s LastIN: 134.8kb/s AVGIN: 463.5Kkb/s MinIN: 38,3b/s MaxIN: 1.2Mb/s LastIN: 621.3kb/s
AVGOUT: 489, akb/<MinOUT: 14. 4kb/SHaxOUT: 1.4Mb/SLastOUT: 704.6kb/s

AVQOUT: 382, 8kb/s HinOUT: 0.0 b/s MaxOUT: 7.6Mb/s LastOUT: 225.0kb/s

_static/up.png

_static/file.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		kwapi-g5k 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Clement Parisot.
 Created using Sphinx 1.3.1.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

